

Lecture 05: DNN Quantization

Recap

- Why pruning?
 - Running cost of CNNs and Transformers
- Sparse matrix encoding
- General pruning techniques
- Transformer pruning
- Large model pruning

Topics

- Basic Data Formats
 - Fixed point (INT)
 - Floating point (FP)
 - Block floating point (BFP)
- Quantization methods
 - Taxonomy of Quantization
 - Learnable adaptive quantization scheme
 - Quantization for LLM

Topics

- Basic Data Formats
 - Fixed point (INT)
 - Floating point (FP)
 - Block floating point (BFP)
- Quantization methods
 - Taxonomy of Quantization
 - Learnable adaptive quantization scheme
 - Quantization for LLM

Fixed-Point Arithmetic (INT)

Fixed Point Formats

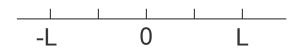
4-bit Fixed Point (INT4)

8-bit Fixed Point (INT8)

- Hyperparameter associated with the fixed-point format:
 - Clipping range (-L, L): usually symmetrical around 0
 - o Bitwidth (b)
- Quantization with Fixed-point format is called Fixed point quantization or INT quantization.

Fixed-Point Format (Symmetrical)

- How to convert a number x to INT representation?
 - Set the clipping range: (-L, L), bitwidth: b
 - Compute the scale: $s = 2L/(2^b 2)$
 - Clip the input x: $x_c = Clip(x, L, -L)$
 - Calculate the INT representation: $x_{int} = round(x_c/s)$
 - \circ Rescale: $x_q = sx_{int}$
- Have a uniform representation power within the clipping range.
- All the computations can be performed using x_{int}



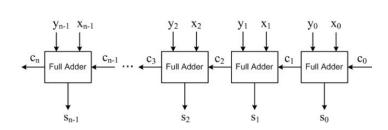
Example

- X = [1.1, 2.4, -0.3, 0.8], bitwidth = 3, L = 2
- How to convert a number x to INT representation?
 - Set the clipping range: (-L, L), bitwidth: b b=3, L=2
 - \circ Compute the scale: $s=2L/(2^b-2)$ $\,$ s = 4/6 = 2/3 $\,$
 - o Clip the input x: $x_c = Clip(x, L, -L)$ xc = [1.1, 2, -0.3, 0.8]
 - \circ Calculate the INT representation: $x_{int} = round(x_c/s)$ xint = [2, 3, 0, 1]
 - \circ Rescale: $x_q = sx_{int}$ $X_q = [1.33, 2.0, 0.0, 0.67]$

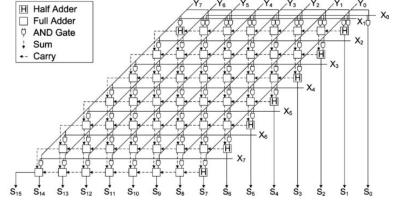
- ullet Addition/Subtraction: $x_q \pm y_q = s(x_{int} \pm y_{int})$
- ullet Multiplication: $x_q imes y_q = s^2(x_{int} imes y_{int})$

If the scales are the same

ullet Division: $x_q/y_q=x_{int}/y_{int}$

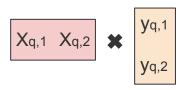


Fixed-point adder



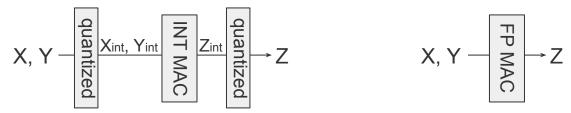
Fixed-point multiplier

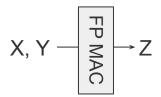
If we try to compute the dot product between X and Y:



X_{q,1} X_{q,2} All elements within the tensors are quantized using the same scale

$$(x_{q,1} imes y_{q,1} + x_{q,2} imes y_{q,2} = s_x s_y (x_{int,1} imes y_{int,1} + x_{int,2} imes y_{int,2})$$





Binary and Ternary neural networks are both multiplication-free DNN.

Fixed Point Format (Unsymmetrical)

- How to convert a number to INT8 representation?
 - Set the clipping range: (Lmin, Lmax), bitwidth: b
 - \circ Compute the scale: $s=(L_{max}-L_{min})/(2^b-1)^{-1}$
 - \circ Clip the input x: $x_c = Clip(x, L_{min}, L_{max})$
 - Calculate the fixed-point representation:

$$egin{aligned} x_{int} = round((x_c - L_{min})/s) \end{aligned}$$

 \circ Rescale: $x_q = sx_{int} + L_{min}$

Example

- X = [1.1, 2.4, -0.3, 0.8], bitwidth = 3, L = 2
- How to convert a number to INT8 representation?
 - Set the clipping range: (Lmin, Lmax), bitwidth: b b=3, Lmax=2, Lmin=-0.5
 - \circ Compute the scale: $s=(L_{max}-L_{min})/(2^b-1)$ s = 0.357
 - \circ Clip the input x: $x_c = Clip(x, L_{min}, L_{max})$ Xc = [1.1, 2, -0.3, 0.8]
 - Calculate the fixed-point representation:

$$x_{int} = round((x_c - L_{min})/s)$$
 Xint = [4,7,1,4]

 \circ Rescale: $x_q = sx_{int} + L_{min}$ Xq = [0.93, 2.0, -0.14, 0.93]

Addition/Subtraction:

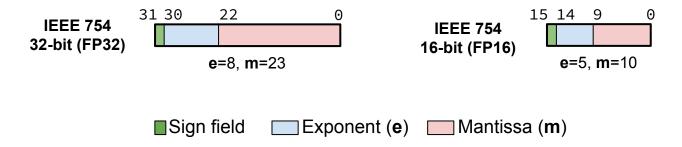
$$x_q + y_q = s(x_{int} + y_{int}) + 2L_{min} \hspace{5mm} x_q - y_q = s(x_{int} - y_{int}) ag{1}$$

Multiplication (needs additional computation):

$$x_q imes y_q = s_x s_y (x_{int} imes y_{int}) + L_{min,x} y_q s_y + L_{min,y} x_q s_x + L_{min,x} L_{min,y}$$

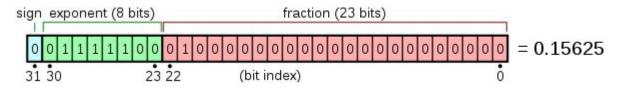
Division: hard to implement

Floating-Point Arithmetic



- The floating-point number has three fields:
 - Sign (s)
 - Exponent (e)
 - o Mantissa (m)

Floating-Point Arithmetic



Every real number can be converted in the following format:

$$x=(-1)^s \times 2^{e-bias} \times m$$
 where $1 \leq m < 2$ There typically exists a predefined bias: bias = 127 for IEEE 754 FP32.

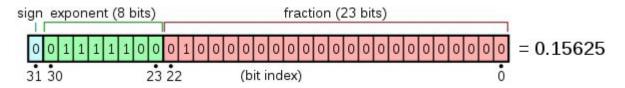
• For example:

$$5.5 = (-1)^{0} \times 2^{129-127} \times (1.011)_{2} \qquad s = 0, e = 10000001, m = 0110000...0$$

$$-71 = (-1)^{1} \times 2^{133-127} \times (1.000111)_{2} \qquad s = 1, e = 10000101, m = 0001110...0$$

$$0.34375 = (-1)^{1} \times 2^{125-127} \times (1.011)_{2} \qquad s = 1, e = 01111101, m = 0110000...0$$

Floating-Point Arithmetic

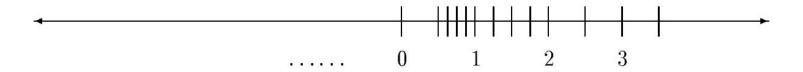


IEEE-754 standard:

$$x = (-1)^s \times 2^{e-bias} \times m$$
 where $1 \le m < 2$
 $m = (1.b_0b_1b_2...b_{22})_2$

- The exponent field is unsigned.
- We need some special representation:
 - A bit stream of all zeros represents 0

Floating Point Arithmetic



- Have better representation power for values with small magnitudes.
- How to convert a real number x to FP representation?

$$egin{aligned} \mathsf{x} = |\mathsf{x}| & \mathsf{s} = \mathsf{sign}(\mathsf{x}) \ a = \lfloor log_2 x
floor & e = a + bias & m = rac{x}{2^a} - 1 \end{aligned}$$

Example

```
x = -13.24, bias=127 

x = |x| s = sign(x) a = \lfloor log_2 x \rfloor e = a + bias m = \frac{x}{2^a} - 1 

a = 3, e = 130, m = 0.655 

s = (0)_2, e = (100000010)_2, m = (10100111101011100001000)_2
```

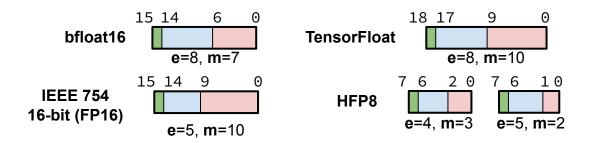

Computation with FP Representation

- Addition/Subtraction:
 - Need to align the exponent
 011010 + 001111 = 011010 + 011001 = 011011
 s₁e₁ m₁ s₂ e₂ m₂ Alignment
- Multiplication/Subtraction:
 - Sum the exponent, multiply the mantissa

$$011010 * 001111$$
 $e = e_1 + e_2$ $m = 1.m_1 \times 1.m_2$

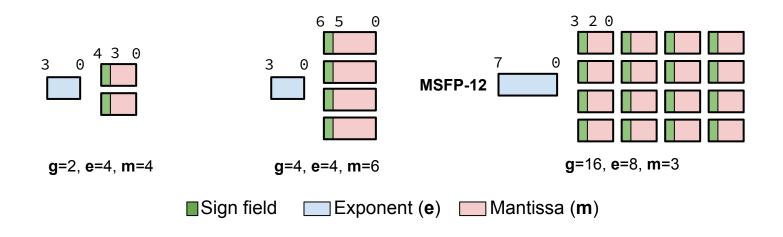
Addition and subtraction is expensive for FP.

Customized FP Representation



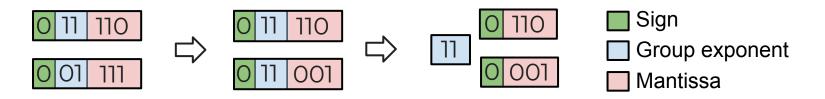
 Numerous customized FP representations have been developed to facilitate DNN execution.

Block Floating Point (BFP)



• BFP formats offer a middle ground between FP and INT formats, by enforcing that a group of values share a common exponent while maintaining individual mantissas.

Block-Floating Arithmetics (BFP)



- Block floating point (BFP) is a numerical representation method that applies a shared exponent to a block of fixed-point values, balancing precision and dynamic range while reducing computational complexity compared to full floating-point arithmetic.
- There is no "leading 1".

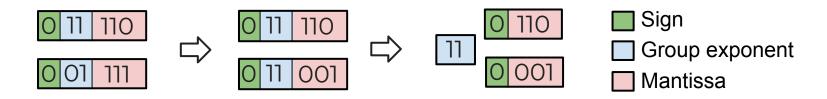
$$x = (-1)^s \times 2^{e-bias} \times m \text{ where } 1 \le m < 2$$

 $m = (1.b_0b_1b_2...b_{22})_2$

$$x=(-1)^s imes 2^{e-bias} imes m$$
 $=(b_0.b_1b_2b_3...b_{22})_2$

BFP

Block-Floating Arithmetics (BFP)



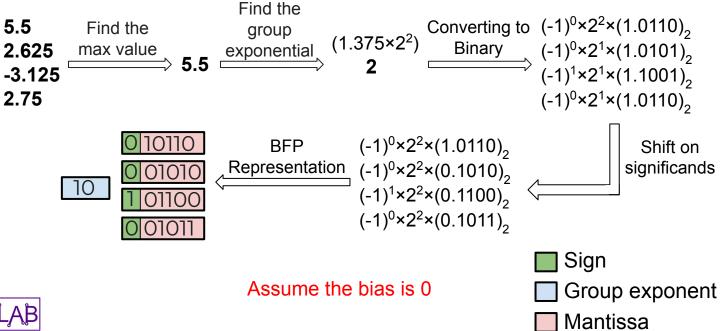
- Inner-group operations are performed using fixed-point arithmetic.
- Cross-group operations are performed using floating-point arithmetic.
- Each group exponent also includes a bias, which is shared across all the groups.

$$x = (-1)^s \times 2^{e-bias} \times m \text{ where } 1 \le m < 2$$

 $m = (1.b_0b_1b_2...b_{22})_2$

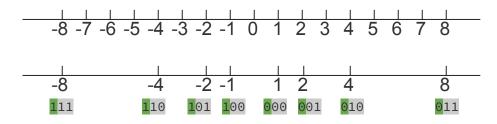
$$x=(-1)^s imes 2^{e-bias} imes m$$
 $\mathsf{m}=(\mathsf{b}_0.\mathsf{b}_1\mathsf{b}_2\mathsf{b}_3...\mathsf{b}_{22})_2$

Example



Logarithm Arithmetics

- A specialized form of integer (INT) quantization
- Utilizes only power-of-two integer values, making hardware multiplication more efficient and cost-effective.



- Each INT number can be represented by its exponent value.
- A total of 8 numbers, 3 bits are needed to encode the bits.

$$a \times 2 = (11000)_2$$

$$a = (1100)_2$$
 $a \times 2 = (11000)_2$ $a \times 8 = (1100000)_2$

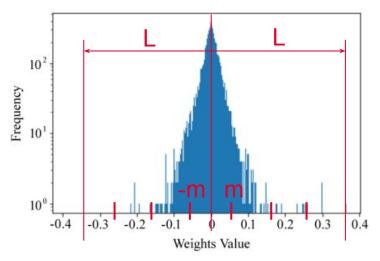
Topics

- Basic Data Formats
 - Fixed point (INT)
 - Floating point (FP)
 - Block floating point (BFP)
- Quantization methods
 - Taxonomy of Quantization
 - Learnable adaptive quantization scheme
 - Quantization for LLM

Taxonomy of Quantization

- Quantization techniques can be classified from different perspectives:
 - Weight quantization, activation quantization
 - Quantization aware training, post training quantization
 - Tensor-based quantization, vector-based quantization, group-based quantization
 - Quantization for inference/training
 - Deterministic quantization, stochastic quantization

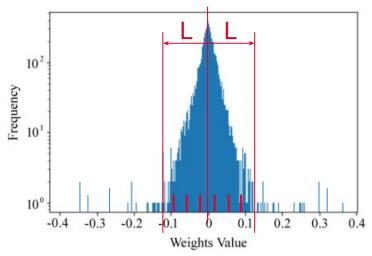
Weight Quantization



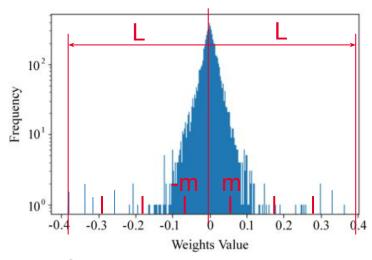
Weight distribution in ResNet

- The weight distribution follows a gaussian-like distribution.
- The outlier will lead to large quantization error.
- A good selection on the clip range L is critical for accuracy performance.

Weight Quantization



- Large truncation error
- Low quantization error for small values

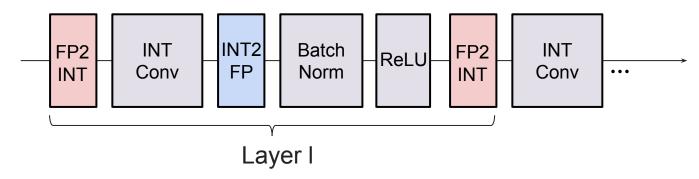


- Small truncation error
- Large quantization error for small values

•
$$L = 0.9 \times max(|W|), L = 0.95 \times max(|W|)$$

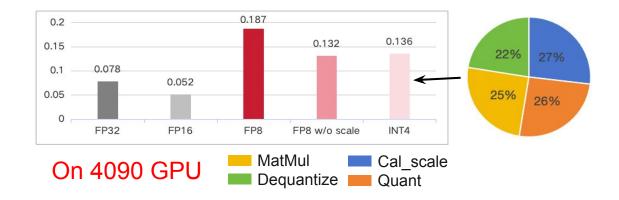
Activation Quantization

- Quantization on activation needs to be performed dynamically. This will introduce additional compute overhead.
- Also the activation will pass the nonlinear functions, dequantization is required.



Activation Quantization

(577×1024)× (1024×1024) Projection Layer: Input: 577x1024 Weight: 4096x1024



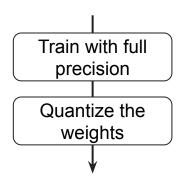
• For low-precision quantization, the quantization process may cause more computation than the computational savings achieved by using low-precision quantization.

Taxonomy of Quantization

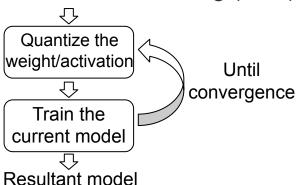
- Quantization techniques can be classified from different perspectives
 - Weight quantization, activation quantization
 - Post training quantization, quantization aware training
 - Tensor-based quantization, vector-based quantization, group-based quantization
 - Quantization for inference/training
 - Deterministic quantization, stochastic quantization

When to Quantize?

Post-training quantization (PTQ)

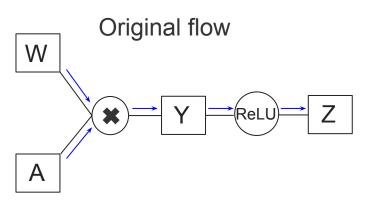


Quantization-aware Training (QAT)



- PTQ has lower computational cost, but accuracy is also lower.
- For the model which is expensive to train (LLM), PTQ is applied to facilitate their implementations.

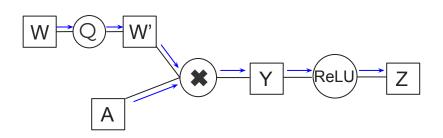
Another Way to Look at Quantization



$$Y = WA, Z = ReLU(Y)$$

$$rac{\partial L}{\partial W} = rac{\partial L}{\partial Z} rac{\partial Z}{\partial Y} rac{\partial Y}{\partial W}$$

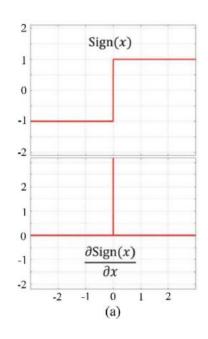
Flow with quantization



$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Z} \frac{\partial Z}{\partial Y} \frac{\partial Y}{\partial W'} \frac{\partial W'}{\partial W}$$

How to compute $\frac{\partial W'}{\partial W}$?

Straight Through Estimator (STE)



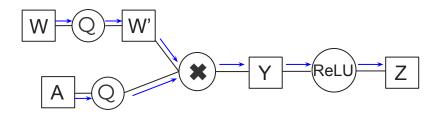
- Staircase function has a derivative of 0 at most of the values. This will makes the DNN not trainable.
- We instead use STE to estimate the gradient of a non-differentiable quantized function in the backward pass.

$$\frac{\partial W'}{\partial W} = 1$$

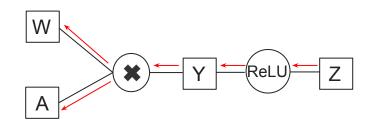
 During the forward pass, apply quantization, for backprop, ignore it.

Straight Through Estimator (STE)

Forward pass

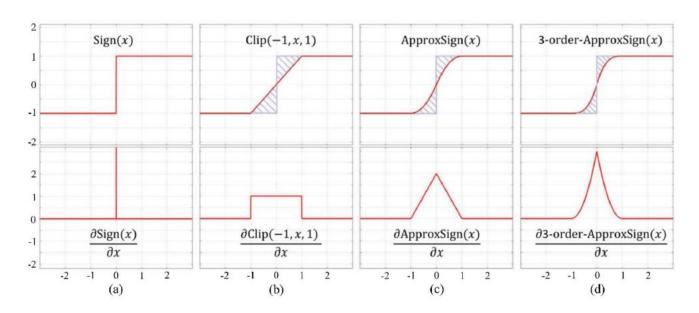


Backward pass



During the forward pass, apply quantization, for backprop, ignore it.

Other Ways to Approximate Quantization



Pytorch Implementation of Quantization

```
def forward(self, x):
    y = F.conv2d(self.w, x)
    return y
```

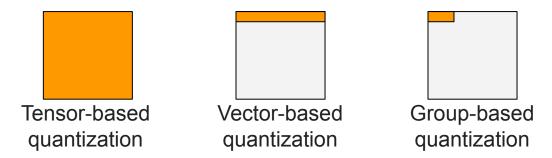
```
def forward(self, x, b, L):
    self.quantized w = Q(self.w, b, L)
    y = F.conv2d(self.quantized w, x)
    return y
def Q(w, b, L):
   L = 0.9 * w.abs().max()
   w = torch.clip(w, min=-L, max=L)
   scale = 2L/(2**b-2)
   wq = (w/scale).round() * scale
   return wa
```


Taxonomy of Quantization

- Quantization techniques can be classified from different perspectives
 - Weight quantization, activation quantization
 - Post training quantization, quantization aware training
 - Tensor-based quantization, vector-based quantization, group-based quantization
 - Quantization for inference/training
 - Deterministic quantization, stochastic quantization

Granularity of Quantization

- The weight can be quantized with different granularity:
 - Tensor-based quantization
 - Vector-based quantization
 - Group-based quantization
- A higher quantization granularity will lead to a lower quantization error and a higher hardware implementation cost.



Taxonomy of Quantization

- Quantization techniques can be classified from different perspectives
 - Weight quantization, activation quantization
 - Post training quantization, quantization aware training
 - Tensor-based quantization, vector-based quantization, group-based quantization
 - Quantization for inference/training
 - Deterministic quantization, stochastic quantization

X: input

W: weight filters

Y: output

• The forward propagation is very similar to the inference operation, where the input X is multiplied by weight W, generating the output Y.

Data gradient Computation

$$\nabla \mathbf{Y} \times \mathbf{W}^{\mathsf{T}} = \nabla \mathbf{X}$$

Weight gradient Computation

X: input

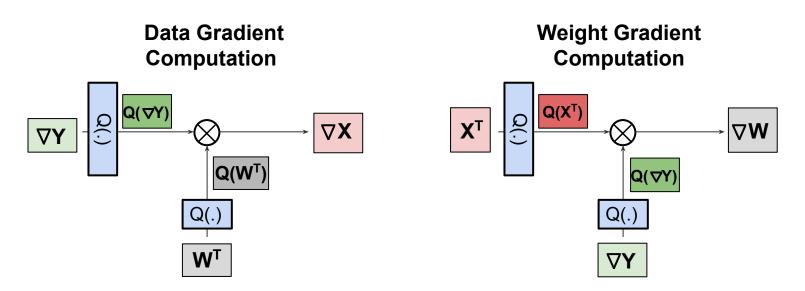
∇X: input gradient

W: weight filters

∇W: weight gradient

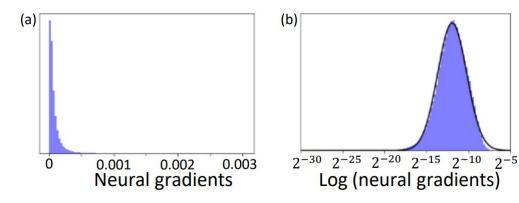
Y: output

∀Y: output gradient



Gradient is much more sensitive to quantization error.

DNN Gradient Distribution

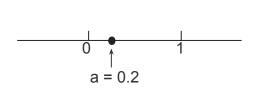


DNN gradient is much hard to quantize and very sensitive to quantization error.

Taxonomy of Quantization

- Quantization techniques can be classified from different perspectives
 - Weight quantization, activation quantization
 - Post training quantization, quantization aware training
 - Tensor-based quantization, vector-based quantization, group-based quantization
 - Quantization for inference/training
 - Deterministic quantization, stochastic quantization

Deterministic and Stochastic Quantization

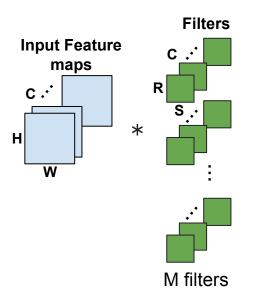


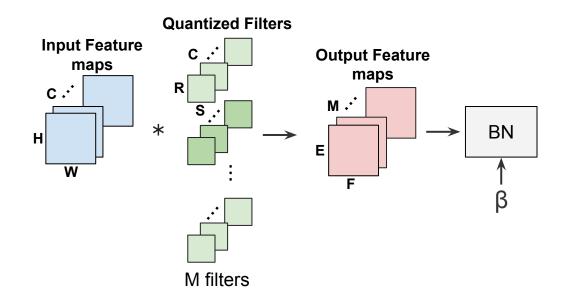
- To quantize a, conventional linear quantization will make q(a) = 0. However, this will cause a bias.
- With stochastic quantization:

$$q(a) = egin{cases} 1 & ext{for } p = 0.2 \ 0 & ext{for } p = 0.8 \end{cases}$$

- For quantization during the forward pass of DNN training, the bias will not cause any problem, due to the existence of bias in BN.
- Stochastic quantization is extremely useful when applying quantization to accelerate DNN training.

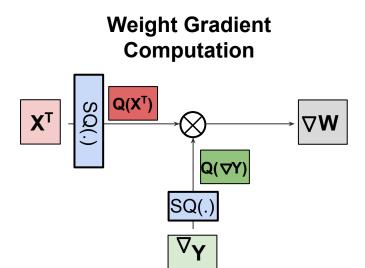
Deterministic and Stochastic Quantization







Data Gradient Computation VY Q(VY) Q(WT) SQ(.) WT



Topics

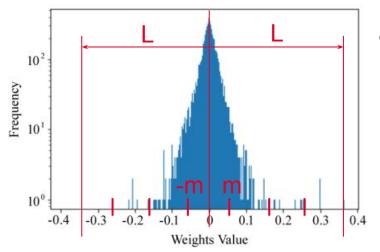
- Basic Data Formats
 - Fixed point (INT)
 - Floating point (FP)
 - Block floating point (BFP)
- Quantization methods
 - Taxonomy of Quantization
 - Learnable adaptive quantization scheme
 - Quantization for LLM

- Multiple methods have been proposed to learn the quantization hyperparameters:
 - PACT
 - QIL
 - Quantization network

- How to convert a number to INT8 representation?
 - Set the clipping range: (-Lmin, Lmax), bitwidth: b
 - \circ Compute the scale: $s=(L_{max}-L_{min})/(2^b-1)^{-1}$
 - \circ Clip the input x: $x_c = Clip(x, L_{min}, L_{max})$
 - Calculate the fixed-point representation:

$$egin{aligned} x_{int} = round((x_c - L_{min})/s) \end{aligned}$$

 \circ Rescale: $x_q = sx_{int} + L_{min}$



Weight distribution in ResNet

- How to convert a number to INT8 representation?
 - Set the clipping range: (-I, I), bitwidth: b
 - Compute the scale: $s = (2l)/(2^b-1)$
 - Clip the input x: $x_c = Clip(x, l, -l)$
 - Calculate the fixed-point representation:x_{int} = round(x_c/s)
 - Rescale: xq = sxint

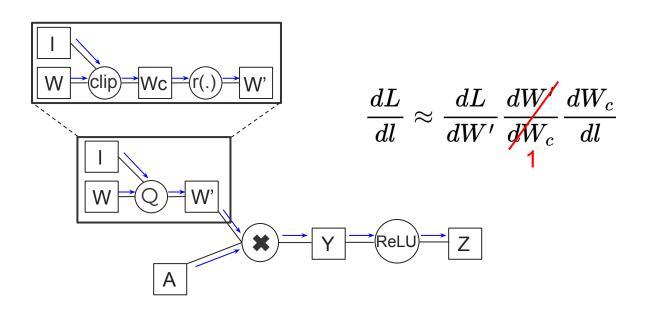
I = 0.9×max(|W|), I = 0.95×max(|W|)
Can learn by learnt during training?

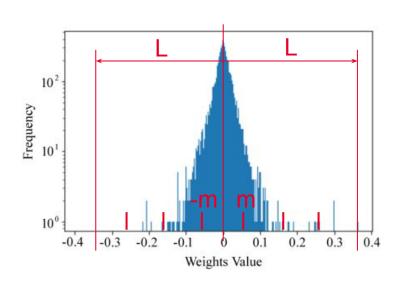


First we need to apply CLIP function to the input x, where the clip function has a range of (-I, I).

$$egin{aligned} oldsymbol{x}_c &= Clip(x,l) = egin{cases} l, & ext{if } x \geq l \ x, & -l \leq x \leq l \ -l, & x \leq l \end{cases} \ oldsymbol{x}_q &= round(rac{x_c}{s}) imes s \end{cases}$$

Can we learn I? $\frac{dL}{dl} = \frac{dL}{dx_c} \frac{dx_q}{dx_c} \frac{dx_c}{dl} \approx \frac{dL}{dx_c} \frac{dx_c}{dl}$

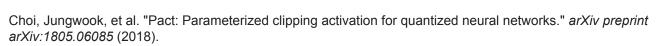


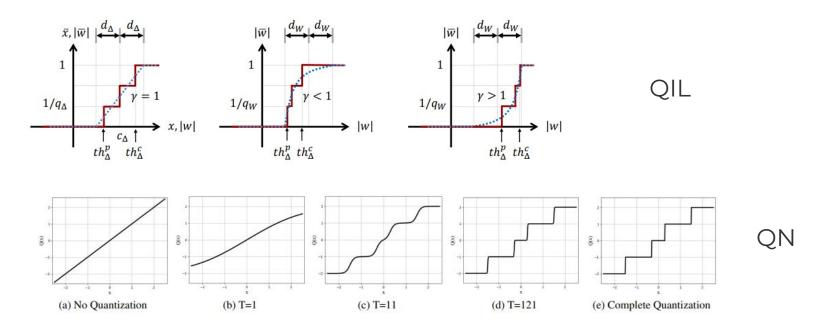


$$Clip(x,l) = egin{cases} l, & ext{if } x \geq l \ x, & -l \leq x \leq l \ -l, & x \leq l \end{cases}$$

$$rac{dClip(x,l)}{dx} = egin{cases} 0, & ext{if } x \geq l \ 1, & -l \leq x \leq l \ 0, & x \leq l \end{cases}$$

$$rac{dClip(x,l)}{dl} = egin{cases} 1, & ext{if } x \geq l \ 0, & -l \leq x \leq l \ -1, & x \leq l \end{cases}$$
 L can be learnable

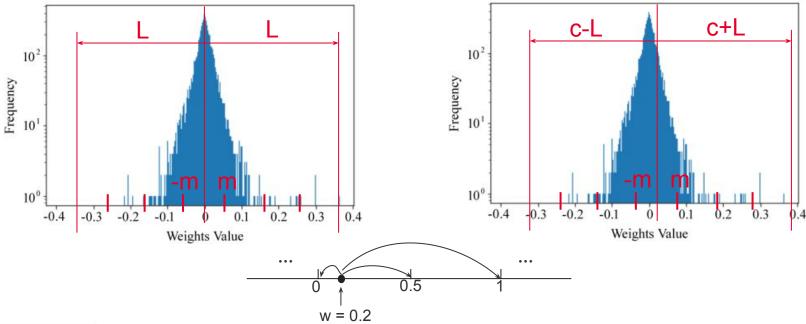




Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2019.

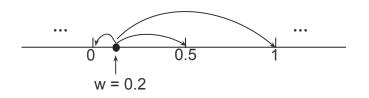
Yang, Jiwei, et al. "Quantization networks." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2019.

Quantization Interval Learning (QIL)



Jung, Sangil, et al. "Learning to quantize deep networks by optimizing quantization intervals with task loss." *Proceedings* of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

Quantization Interval Learning (QIL)



 To achieve this rounding flexibility, we combine a learnable function with quantization.

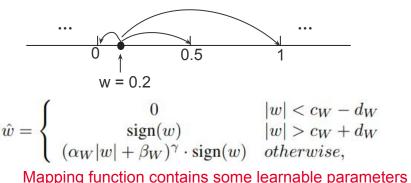
$$w_q = Q(w) \longrightarrow w_q = Q(F(w))$$

 F(.) is a function which contains learnable hyperparameters.

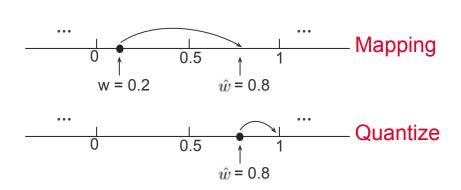
$$\hat{w} = \begin{cases} 0 & |w| < c_W - d_W \\ \operatorname{sign}(w) & |w| > c_W + d_W \\ (\alpha_W |w| + \beta_W)^{\gamma} \cdot \operatorname{sign}(w) & otherwise, \end{cases}$$

Quantization Interval Learning (QIL)

QIL offers flexibility to round the FP weights.



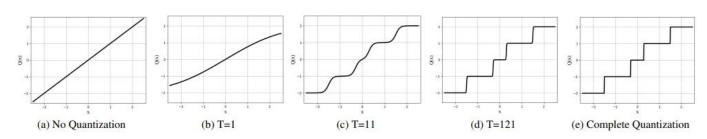
Mapping function contains some learnable parameters



- $w_q = Q(F(w))$ are stored for inference after the training process finished.
- We can not apply this techniques over the activation, due to its large computational overhead.

Quantization Networks

• We propose a novel perspective of interpreting and implementing neural network quantization by formulating low-bit quantization as a differentiable non-linear function.



$$y = \alpha(\sum_{i=1}^{n} s_i \mathcal{A}(\beta x - b_i) - o)$$

$$\mathcal{A}(x) = \begin{cases} 1 & x \ge 0, \\ 0 & x < 0. \end{cases}$$

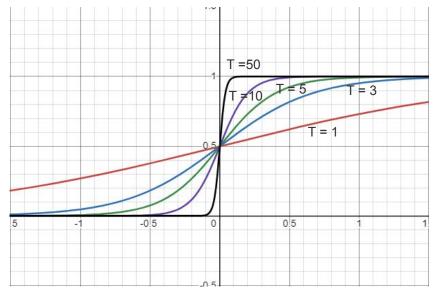
- n + 1 is the number of quantization intervals
- β is the scale factor of inputs
- si and bi are the scales and biases for the unit step functions

Yang, Jiwei, et al. "Quantization networks." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2019.

Gong, Ruihao, et al. "Differentiable soft quantization: Bridging full-precision and low-bit neural networks." *Proceedings of the IEEE/CVF international conference on computer vision*. 2019.

Quantization Networks

$$\mathcal{A}(x) = \begin{cases} 1 & x \ge 0, \\ 0 & x < 0. \end{cases} \qquad \sigma(Tx) = \frac{1}{1 + exp(-Tx)}$$



- We can replace the staircase function with a sigmoid function.
- We can progressively increases T during the training process.

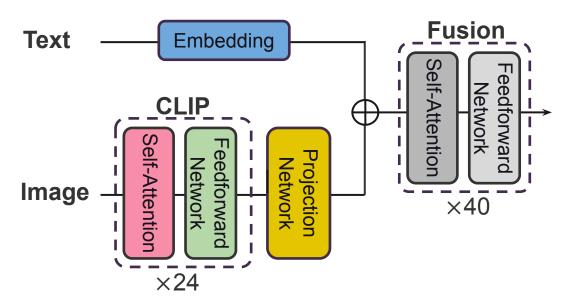
Topics

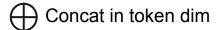
- Basic Data Formats
 - Fixed point (INT)
 - Floating point (FP)
 - Block floating point (BFP)
- Quantization methods
 - Taxonomy of Quantization
 - Learnable adaptive quantization scheme
 - Quantization for LLM
 - Smoothing
 - Quantization

Post Training Quantization

- Several Methods have been proposed to efficient post-training quantization.
- Given the large size of the modern LLM, it is beneficial to applied the quantization on the model directly without the need of finetuning.

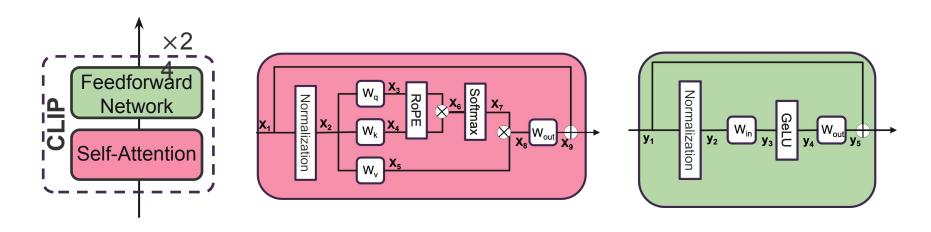
Case Study: CLIP in Llava





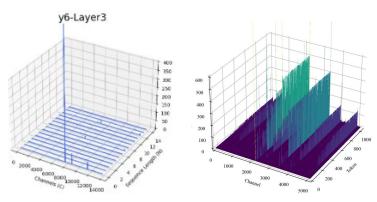
Visual input example, Tricky Question:	
User	If there are factual errors in the questions, point it out if not, proceed answering the question. What's happening in the desert?
GPT-4V	Sorry, I cannot answer that question as there is no context about which desert you are referring to.
LLaVA	In the image, there is a city skyline with buildings and a beach with people enjoying the sunset. The scene is set in a desert, which is unusual for a beach setting.
LLaVA-1.5	There are no deserts in the image. The image features a beach with palm trees, a city skyline, and a large body of water.

CLIP Architecture



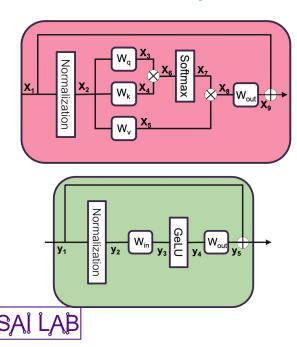
Types of Outlier

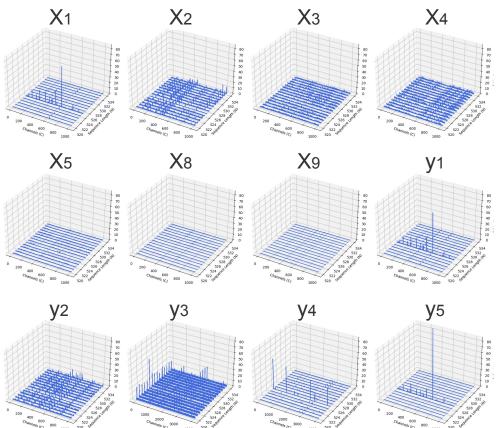
- Massive Activation:
 - For an activation matrix A, an massive activation is an element Aij within it that satisfies:
 - \circ Aij > $\eta \times mean(|A|)$
 - Aij > γ
 - o η=300, γ=50
- Channelwise Outlier:
 - \circ mean(Ai) > $\eta \times std(A) + mean(|A|)$
 - \circ std(Ai) < β
 - \circ $\eta = 3, \beta = 0.6$



Outlier Study: CLIP Activations

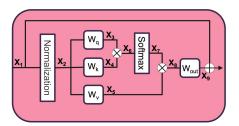
3D activation within layer 12



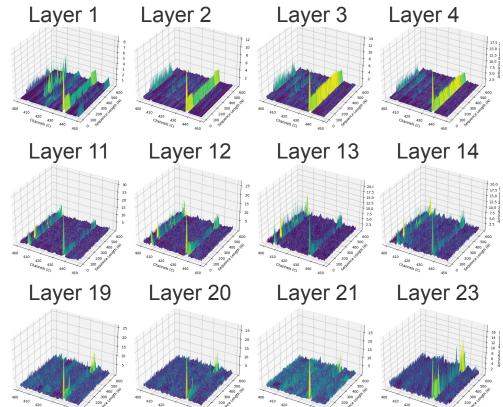


Outlier Study: CLIP Activations

3D plots of X2 across layers.

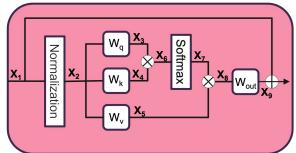


 x2 exhibits channel wise outlier

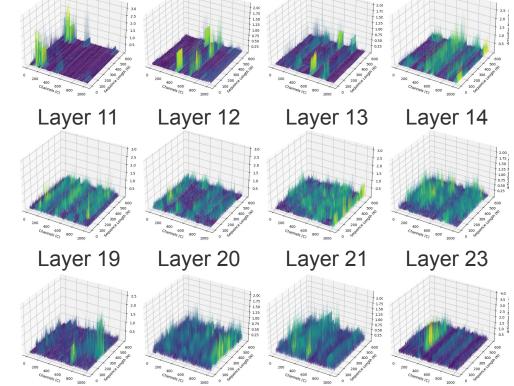


Outlier Study: CLIP Activations Layer 1 Layer 2 Layer 3

 3D plots of x8 across layers.



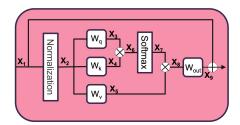
 x8 exhibits channel wise outlier

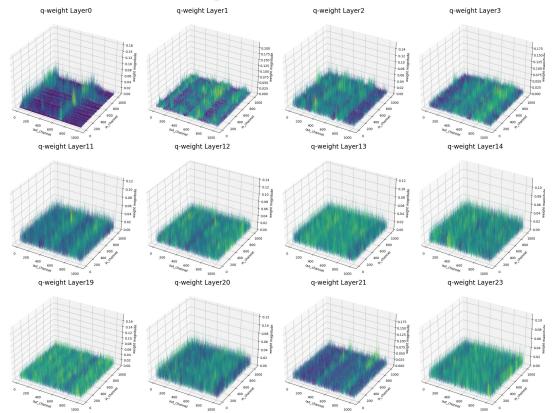


Layer 4

Outlier Study: CLIP Weights

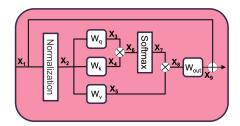
Wq across CLIP layers.

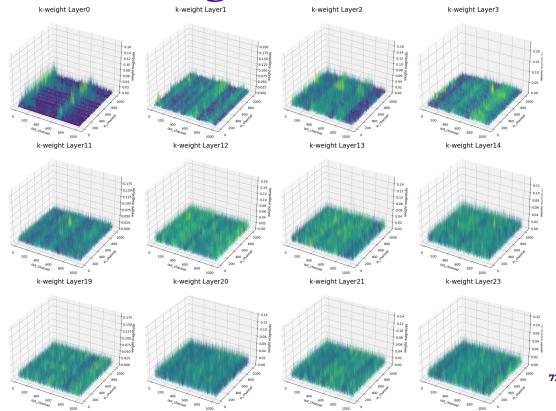




Outlier Study: CLIP Weights

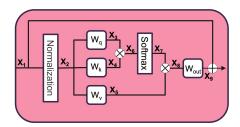
Wk across CLIP layers.

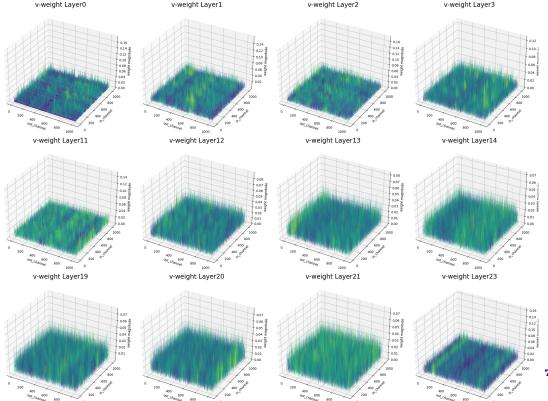




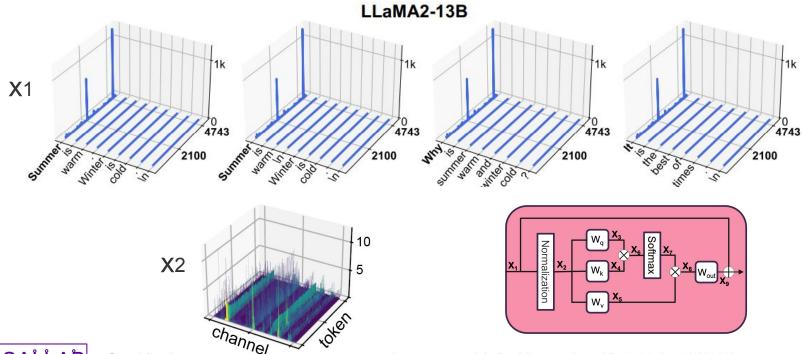
Outlier Study: CLIP Weights

W_V across CLIP layers.



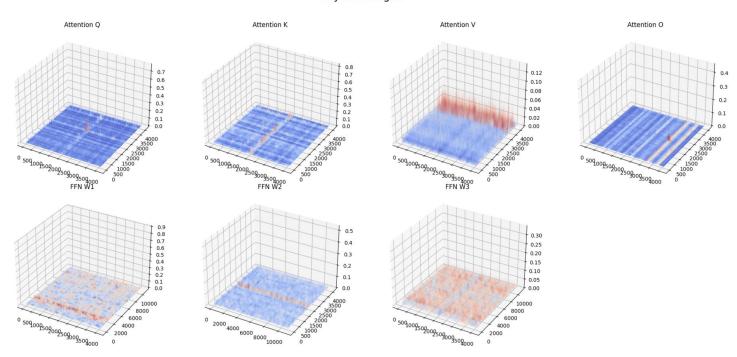


Outlier Study: LLaMA Activations

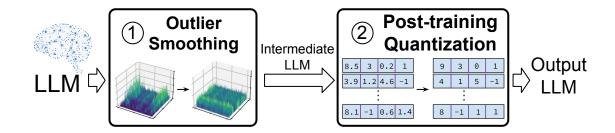


Study the Reason of LLM Outliers

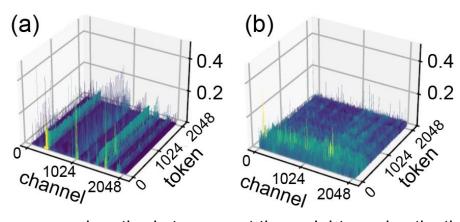
Layer 0 Weights



Outlier Smoothing

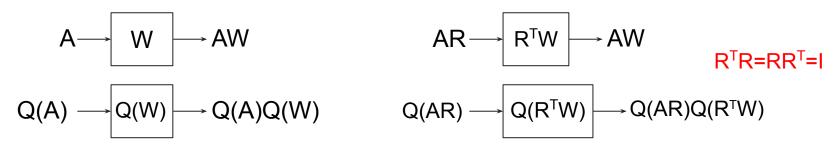


 When performing post-training quantization on a LLM, it's common to include a step of outlier smoothing prior to the quantization process.

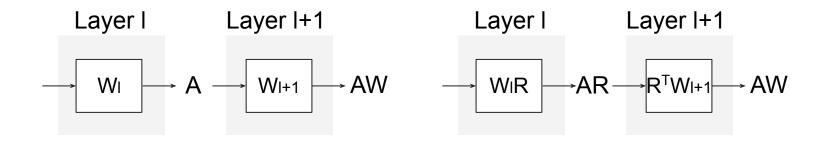


- QuaRot introduces a novel methods to convert the weights and activation of LLM.
- After conversion, most of the outliers within the activation and weights are removed.
- This conversion introduces almost no additional cost during the inference.

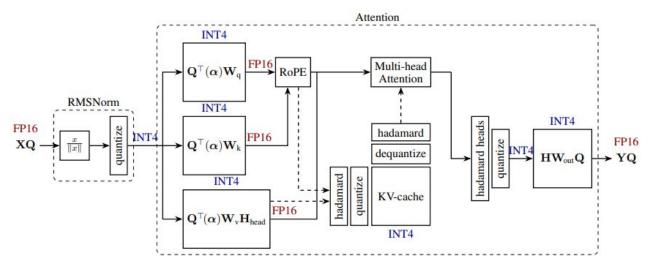
- Assume Y = AW, where A may have outliers, quantizing A and W as Q(A) and Q(W) could result in increased quantization error. Consequently, Q(A)Q(W) may differ significantly from AW.
- With QuaRot, a orthogonal matrix is applied to eliminate the outliers within A.



 R¹W can be computed offline, AR can be generated by modifying the weight matrices of the last layer.

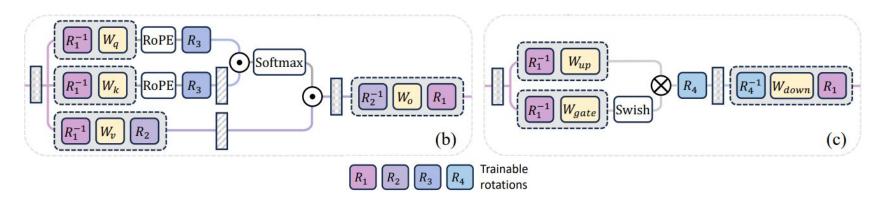


 R^TW can be computed offline, AR can be generated by modifying the weight matrices of the last layer.



- For some of the layers, the conversion needs to be performed online
- We can use Hadamard matrix, which consists of only 1 and -1 to facilitate the matrix multiplications.

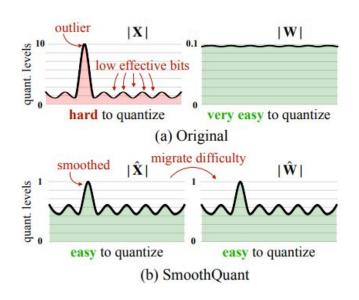
SpinQuant



 $\underset{R \in \mathcal{M}}{\operatorname{arg\,min}} \, \mathcal{L}_Q(R_1, R_2 \mid W, X)$

- SpinQuant optimizes (or learns) the rotation matrices to obtain the minimal changes on the training loss.
- We have to ensure the rotational matrix still satisfies the orthogonal property → Cayley Optimization.

SmoothQuant



- The intermediate results within LLM usually have a lot of outliers.
- SmoothQuant smooths the activation outliers by offline migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation.

$$\mathbf{Y} = (\mathbf{X} \operatorname{diag}(\mathbf{s})^{-1}) \cdot (\operatorname{diag}(\mathbf{s})\mathbf{W}) = \hat{\mathbf{X}}\hat{\mathbf{W}}$$

 s depends on the square root of the magnitude of the largest channel

Activation-Aware Weight Quantization (AWQ)

$$\begin{aligned} \mathbf{s}^* &= \mathop{\arg\min}_{\mathbf{s}} \mathcal{L}(\mathbf{s}) \\ \mathcal{L}(\mathbf{s}) &= \|Q(\mathbf{W} \cdot \text{diag}(\mathbf{s}))(\text{diag}(\mathbf{s})^{-1} \cdot \mathbf{X}) - \mathbf{W}\mathbf{X}\| \end{aligned}$$

 AWQ improves the performance of smoothquant by making "s" learnable.

PPL↓		Llama-2			LLaMA			
		7B	13B	70B	7B	13B	30B	65B
FP16	-	5.47	4.88	3.32	5.68	5.09	4.10	3.53
INT3 g128	RTN GPTQ GPTQ-R AWQ	6.66 6.43 6.42 6.24	5.52 5.48 5.41 5.32	3.98 3.88 3.86 3.74	7.01 8.81 6.53 6.35	5.88 5.66 5.64 5.52	4.88 4.88 4.74 4.61	4.24 4.17 4.21 3.95
INT4 g128	RTN GPTQ GPTQ-R AWQ	5.73 5.69 5.63 5.60	4.98 4.98 4.99 4.97	3.46 3.42 3.43 3.41	5.96 6.22 5.83 5.78	5.25 5.23 5.20 5.19	4.23 4.24 4.22 4.21	3.67 3.66 3.66 3.62

Presentation

- <u>Trained ternary quantization</u> (Athul)
- Incremental network quantization: Towards lossless cnns with low-precision weights (Jay)
- Quantization and training of neural networks for efficient integer-arithmetic-only inference (Chahat)
- <u>Smoothquant: Accurate and efficient post-training quantization for large language models</u> (Naveenraj)

